Path Planning and Tracking for Autonomous Cars Danny Hernandez, Electrical Engineering, University of California Santa Barbara Dr. Katie Byl, Guillaume Bellegarda, Thomas Ibbetson

Electrical and Computer Engineering Department

Introduction

- Autonomous vehicles have the potential to increase safety, efficiency, and reliability in transportation services.
- Given the starting position and orientation of the car, the objective is to navigate to a target position and orientation

Hypothesis
The car will not identically match the simulation since there exist external factors that can affect the trajectory of the car in the realworld.

Methods

Path Planning

- Utilize a Dubins path to find fastest route between a starting position & orientation and a target position and orientation shown in figure 1
- Dubins path contains a fixed turn radius and can consist of 3 segments

Path Tracking (Simulation)

Run simulation where proportional controller is implemented to adjust the turn and follow the path as accurately as possible as shown in figures 2.1-2.3 Path Tracking (Real-World)

Figure 1

Results

Simulation

• In Figure 3.1, the car's actual path was mapped versus its target

• Transfer values from simulation to hardware and try to mimic path trajectory

- trajectory
- Successful tracking since both paths are very similar

Real World

- In figure 3.2, desired and actual are minimally offset
- Expected some difference but not this little

Figure 3.2

Acknowledgements

This Work could of not have been possible without the help and support from Dr.Katie Byl, Guillaume Bellegarda, Thomas Ibbetson and the CSEP staff.

Future Research

- Use multiprocessing to live track the real car and make it more accurate
- Implementing LEDs to facilitate car tracking and sharpen precision

