Haptic Touch Amplification in Virtual Reality Environments

Erin Woo - CCS Computing
EUREKA! Scholar 2018 – RE-Touch Lab
PI: Prof. Yon Visell – ECE/Media Arts & Technology
Mentor: Anzu Kawazoe – PhD. Media Arts & Technology

Haptic (def.): relating to the sense of touch
What are **Dynamic** Haptics?

Touch Amplification Device Feedback Loop
Examples of Touch Amplification Effects

Touch Amplification in a Virtual Environment

Original 2D Projected Interface

Virtual Reality Prototype
Implementing virtual reality components

Hardware:
- Oculus Rift VR Headset
- Leap Motion hand tracker
- Touch amplification system

Software:
- Development in **Unity - C#**
- Using Leap Motion **Core + Interaction Engine Assets**

Haptics + VR System

- Leap Motion Hand Tracker
- VR Engine
- Oculus Rift
- Piezo Sensor
- Haptic Engine
- Actuator
Prototype Demonstration

Experimental Question: Does dynamic haptics in a 3D environment affect user preference? Is it empirically more “immersive”?
Simon VR Game Application

• Goals:
 • Using **proxy objects** to make static objects more interactive and lifelike.
 • Showing only one of the many possible applications for haptic touch amplification in VR.
Hypothesizing increased user interactivity with haptics in VR

• User pilot study:
 • Playing game in VR, **with** and **without** touch amplification.
 • Standard survey methods: 7 point Likert scale “preference” and “presence” questions
 • **Tangibility, naturalness, accuracy, responsiveness, and entertainment.**

7 Point Likert Scale Survey: Presence Questionnaire

Sample Question:

Responsiveness:
1. How responsive was the environment to actions that you initiated (or performed)?

<table>
<thead>
<tr>
<th>NOT AT ALL</th>
<th>___</th>
<th>___</th>
<th>___</th>
<th>___</th>
<th>___</th>
<th>___</th>
<th>___</th>
<th>COMPLETLY</th>
</tr>
</thead>
</table>

12

13
Looking forward ...

• Continue **working on paper** until September.
 • Submitting to *SIGCHI Conference: Human Factors in Computing Systems*

• Build more applications, focusing on the use of **proxy objects**.
 • Demonstrate the device’s diverse capabilities.

• **Optimize** current applications.

Special thanks to ...

Anzu Kawazoe
Mentor

Prof. Yon Visell
Principal Investigator