Investigating the functional roles of δ-catenin protein

Celeste Parra Bravo, Elmer Guzman, Ken Kosik, MD

Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara

Introduction

There is one thing that incurable and debilitating disorders like Alzheimer’s disease, Schizophrenia, and Autism all have in common: simple mutations in the brain. Neurodevelopmental and neurodegenerative diseases are nothing new to the worldwide population, but only in the last 50 years have scientists conducted extensive research in a variety of neurological disorders, focusing primarily on how they develop. There is still so much that we don’t know about the brain and scientists must be able to understand the key players that cause the brain to malfunction in order to find treatments that stop incorrect development of the brain, as well as its early and rapid deterioration. One of those key players is delta catenin.

Delta catenin is a synaptic protein that was found to be a key player in the regulation of dendrites, density of the synapse, plasticity and function of neurons, all of which keep the brain working and interacting properly. Genetic mutations or loss of the delta catenin gene may disrupt normal neuronal wiring. My mentor and I began the investigation into how the regulation of delta-catenin inside human neurons affects its surroundings.

Delta catenin 2

Methods

1. Repression

- Chromosome 5p
- ΔCatenin
- δ-catenin
- Repression machinery
- CREB
- CRISPR
- sgRNA
- Knocked down
- ΔCatenin
- δ-catenin
- RNA
- Transcription

- We wanted to find the sequence within the gene that coded for delta catenin the best, so when the gene was repressed, the protein would stop being produced as much as possible. For this, we designed 3 guide RNAs that served to localize each sequence and bind accordingly. Whichever guide RNA sample represses the most, we will know that this sequence codes for delta-catenin the best.
- A CREB repressor and a CRISPR system fuse together to make up the repression machinery for the gene.
- With the guide RNA localizing the gene, the complex formed binds to the target.
- Once the complex is on the gene, transcription is inhibited and production of the protein halts.

2. Amplification

- Control
- Experimental

- Once the protein is knocked down, the next step is to measure the relative expression of delta catenin mRNA. The amount of mRNA has a strong correlation to the amount of protein, so it is used as a tool to measure the protein’s expression. We used a method called qPCR which amplifies a target DNA by copying. Our experimental samples were the cells that had delta catenin knocked down, and our control samples did not have delta catenin knocked down.
- First, it denatured the DNA that coded for delta catenin, meaning it separated the two strands of the DNA into 2 single ones. Then, a primer attached to the DNA which, lastly, helped copy it many times over, amplifying the amount of DNA there was. It was expected that the experimental samples would have a smaller amount of the amplified gene, compared to the control. To determine if this is true, we used a data analysis technique to measure its relative expression.

Results

qPCR lower relative expression = lower δ-catenin mRNA levels = knockdown confirmed

Conclusions and Future work

From the qPCR neuron data, the sample with guide RNA 3 has the lowest relative expression of mRNA compared to the control, meaning it was the most effective in the delta catenin protein knockdown. Now that the knockdown is confirmed with the best guide RNA, our focus can now shift to studying the differences in morphological and electrophysiological properties between the neuron knockdown samples and the control. In the end, it is important to continue studying delta-catenin’s roles within the human brain in order to gain a better understanding of how this protein interacts with its surroundings, and eventually, we will be able to understand enough to manipulate it and use that knowledge to develop ways to ameliorate the effect of genetic mutations that cause incurable and debilitating neurological diseases.

Acknowledgments

- Elmer Guzman, PhD. student
- Dr. Ken Kosik, Principal Investigator
- The Kosik Research Group