Path Planning and Tracking for Autonomous Cars

Danny Hernandez, Electrical Engineering Guillaume Bellegarda Prof. Katie Byl Dept. of Electrical and Computer Engineering

Autonomous cars are the future of transportation

-safety (reduce human error)

-energy efficiency (optimized trajectories waste less fuel/battery)

-speed (quicker routes than can be planned by a human driver)

Use model based techniques for dynamic car maneuvers

-avoid or exploit wheel slipping

-translate simulations onto real life small car model

Our Coordinate System

-to reference position: (x-value, y-value, orientation)

A (x-initial, y-initial, theta-initial): $(3,3,\pi/6)$

B (x-goal, y-goal, theta-goal): (5,9,-π/2)

Understanding Orientation

Simulation Tracking

Hardware

Path Planning

-use a Dubins path to find the shortest way to reach a target with a fixed turn radius

-Dubins Path uses a combination of curves and lines

CSC Path

Dubins Path Basics

Inputs:

- 1. Turn Radius
- 2. Starting position & orientation

3. Target position & orientation

Path Planning

Simulation Tracking

Hardware

Path Tracking in Pybullet Simulator

-Compare current car position and heading with the next point in the Dubins path

-Adjust the turn angle to steer the car towards this next point

Simulation Car Tracking

Simulation result

Input values:

- -turn radius= 1.0m
- -velocity=~1.5(m/s)
- Starting Coordinates:(0,0,0)
- -Target:(0,2,π)

The process

Path Planning

Simulation Tracking

Hardware

Actual Car Tracking

Starting coordinates: \sim (0,0,0)

Target: (0, 2, π)

Turn radius: 1m

Speed: ~0.70(m/s)

Real World result

Comparing simulation and real world trials

Simulation

Actual Car

Factors responsible for differences between simulation and real world tests

1. Car dynamics differ between simulation and real world

2. Simulation has "ideal" conditions (i.e. known friction, no disturbances or uncertainty, perfect sensing, etc.)

Further improvements yet to come

-use multiprocessing to improve realworld tracking

-update simulation car to be proportionally accurate with actual car

-use LEDs to better track the orientation of the car

Conclusion

-Path Planning: utilize Dubins path to reach goal from starting point

-Path Tracking: implemented proportional controller to accurately track the car's path in simulation and hardware

-Analyzed data to track accuracy and improve conditions to get more accurate results in the future

Acknowledgements

Guillaume Bellegarda

Sammy Davis

18