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Quantum Computing
● Qubits vs. Bits
● “Quantum 

parallelism”
● Unitary 

transformations 
(rotations) only



  

Public-Key Cryptography
Security relies on hard mathematical problems 
defined by the public key which become easy 
when you know the private key

Example of Public-Key Cryptosystems:
RSA is based on the problem of factoring



  

Subset-Sum Problem
Given a set B of integers, what subset (if any) 
sums to an arbitrary integer S?
Example: { 319, 196, 250, 477, 200, 559 }, with 

the target S = 1605
Solution: 319 + 250 + 477 + 559 = 1605
Examples of cryptosystems based on the 
subset-sum problem: 

Merkle-Hellman, Chor-Rivest



  

Is the cryptosystem secure? 

1. Study public-key cryptosystems based 
on the Knapsack/Subset-Sum problem

2. Develop quantum algorithms to break 
such cryptosystems



  

Understanding Systems

Chor-Rivest Knapsack System
Benny Chor and Ronald L. Rivest

(1984)

Powerline System
Hendrik W. Lenstra Jr.

(1991)

Solved by
Serge Vaudenay

(1998)

?



  

Quick Finite Field Intro
FF(ph) = { a0 + a1x + a2x2 + … + ah-1xh-1 }, where a

i
 are in 

FF(p), so if p is an integer, { 1, 2, 3, … , p-1 }

Multiplicative generator: an element g such that gn 
produces every element of the finite field except the zero 
element.



  

Chor-Rivest Knapsack
Public Key:
● FF(ph), where p is prime and h ≤ p
● {c0, …, cp-1}, where ci = logg(x+i) + d

Private Key:
● random multiplicative generator g of FF(ph)
● random integer 0 ≤ d ≤ ph-2



  

Chor-Rivest Knapsack
Encryption:
For message m with weight h, E(m) = Σmici

Decryption:
Factor the expression: 

gs mod f(x) + f(x),
where s = E(m) – hd

The roots of the linear factors contain the message. 
Factoring polynomials is easy.



  

Powerline System
Public Key:
● FF(q) and FF(qh), where q = pn

● Random set S = { 1, 2, 3, … , s } where s ≤ q
● {c1, …, cs}, ci = (ux-uπ(i))k of FF(qh)

Private Key:
● Random element u  ∈ FF(qh)
● random integer 1 ≤ k ≤ qh-1, where gcd(k, qh-1) = 1
● Map π: S → FF(q)



  

Powerline System
Encryption:
For message m with weight h, E(m) = ∏ci

mi of FF(qh)

Decryption:
Factor the expression:

E(m)lu-h + f(x), 
where kl = 1mod(qh-1)

The roots of the linear factors contain the message. 
Factoring polynomials is easy.



  

Conclusion
Chor-Rivest Knapsack System
Benny Chor and Ronald L. Rivest

(1984)

Powerline System
Hendrik W. Lenstra Jr.

(1991)

Solved by
Serge Vaudenay

(1998)

Discrete 
logarithm 
problem
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Questions?
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