
SAFFRON: Targeting Efficiently
Rucha Kolhatkar

Graduate Mentor: Amirhossein Reisizadeh
Faculty Advisor: Professor Ramtin Pedarsani

Department of Electrical and Computer Engineering, University of California, Santa Barbara

Program Design
I	learned	the	existing	algorithm	while	applying	concepts	from	linear	
algebra,	algorithm	complexity,	and	coding	theory.	From	there,	I	
developed	a	design	for	the	code	for	SAFFRON,	implemented	it	in	
MATLAB,	and	ran	it	with	randomly	generated	data.		SAFFRON	takes	
the	inputted	test	group	that	contains	zeros	(not	defective)	and	ones	
(defective)	based	on	a	specified	degree	of	left	nodes,	or	items	from	
the	test	group,	randomly	assigns	each	left	node	to	that	number	of	
right	nodes	or	pools	(bundle	of	tests),	thus	generating	a	bipartite	
graph.	SAFFRON	then	performs	a	series	of	operations	on	the	bipartite	
graph	and	finally	retrieves	the	defective	items.

Notation
n	=	total	number	of	items	in	test	group
M	=	total	number	of	pools
d	=	degree	of	left	nodes	(items)
K	=	number	of	defective	items	in	test	group

Literature Cited
K.	Lee,	R.	Pedarsani,	and	K.	Ramchandran.	Saffron:	A	fast,	efficient,	and	robust	framework	for	group	testing	based	on	sparse-graph	codes.	In	Information	
Theory	(ISIT),	2016	IEEE	International	Symposium	on,	pages	2873–2877.	IEEE,	2016

Acknowledgements
Thank	you	to	mentor	Amirhossein	Reisizadeh,	faculty	advisor	Ramtin Pedarsani,	Samantha	Davis,	the	EUREKA	Program,	and	CSEP,	for	
providing	invaluable	guidance	throughout	the	research	process.	Funding	for	the	project	came	from	the	University	of	California,	Santa	Barbara.

X = [1 0 1 0 0 0 0 1] SAFFRON 1 3 8
Inputted	Test	Group Code Retrieved	Defectives

Analysis
The	expected	trend	of	the	normalised number	of	tests,	or	the	number	
of	pools	required	per	known	number	of	defects,	versus	the	average	
fraction	of	unidentified	defective	items	is	decreasing.	The	program	
implementation	of	SAFFRON	produces	a	similar	graph	for	d	=	3,	5,	7,	
and	9,	d	being	the	number	of	pools	an	item	is	assigned	to,	suggesting	
that	the	algorithm	has	been	implemented	correctly.	As	the	number	of	
items	assigned	to	each	pool	increases	for	any	number	of	pools,	the	
average	fraction	of	unidentified	defects	decreases.

Applications
Group	testing	can	be	applied	to	various	real-life	scenarios,	from	DNA	
library	screening,	in	which	group	testing	is	used	to	determine	which	
DNA	samples	contain	the	complement	of	a	certain	gene,	to	Active	
Neighbour Discovery,	a	process	in	which	group	testing	is	applied	to	
find	out	which	devices	are	using	a	wireless	network	and	which	are	
not.		By	applying	group	testing,	time	can	be	saved.

1 2 3 4 5 6 7 8 9 10

Number of Tests = 6log(2⁹)*9 = 486
Average Error Margin = 0.009141

Expected Trend

n = 512, K = 3

Test PoolsBipartite	Graph Retrieve	
Defectives

